The effects of forest canopy shading and turbulence on boundary layer ozone

نویسندگان

  • P. A. Makar
  • R. M. Staebler
  • A. Akingunola
  • J. Zhang
  • C. McLinden
  • S. K. Kharol
  • B. Pabla
  • P. Cheung
  • Q. Zheng
چکیده

The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59-72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reply to comments on ”Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model”

“In SOSAA, the horizontal wind velocity (u and v), temperature (T ), specific humidity (qv), turbulent kinetic energy (TKE) and the specific dissipation of TKE (ω) are computed every time step (10 s) by prognostic equations. In order to represent the local to synoptic scale effects, u, v, T and qv near and within the canopy are nudged to local measurement data at SMEAR II station with a nudging...

متن کامل

Reply to comments on “Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model”

1. Comments: (1) Authors state that they have implemented a multi-layer dry deposition model into SOSAA, which is a 1D chemical transport model. SOSAA is described in Section 2.3.1, which lists different modules and references but does not explain the model types or physical principles. The key elements of SOSAA relevant to the present study, especially turbulent mixing and the derivation of ed...

متن کامل

The in uence of a forest canopy on top - down and bottom - up diffusion in the planetary boundary layer

Results from two nested-grid large-eddy simulations comparing cases with and without a plant canopy are presented. Through comparisons of numerically generated mean and turbulence statistics, the in uence of a plant canopy with a leaf area index of two is shown to modify the air  ow compared with an identical case without plants. Investigations of instantaneous Ž elds and spatial spectra show...

متن کامل

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

Reply to comments on “Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model”

A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concen-trations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux withinand above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy undervarying environmental condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017